4.2 Article

Suppression of Glial HO-1 Activitiy as a Potential Neurotherapeutic Intervention in AD

期刊

CURRENT ALZHEIMER RESEARCH
卷 6, 期 5, 页码 424-430

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/156720509789207985

关键词

Aging; Alzheimer Disease; Astrocyte; Heme oxygenase-1; Iron; Metalloporphyrin; Mitochondria; Neuroprotection; OB-24; Oxidative stress

资金

  1. Canadian Institutes of Health Research Funding Source: Medline

向作者/读者索取更多资源

The mechanisms responsible for oxidative damage, pathological brain iron deposition and mitochondrial insufficiency in Alzheimer disease (AD) remain enigmatic. Heme oxygenase-1 (HO-1) is a 32 kDa stress protein that catabolizes heme to biliverdin, free iron and carbon monoxide. The HO-1 gene is exquisitely sensitive to oxidative stress and is induced in brain and other tissues in various models of disease and trauma. Our laboratory demonstrated that 1) HO-1 protein is significantly over-expressed in AD-affected temporal cortex and hippocampus relative to neurohistologically-normal control preparations, 2) in cultured astrocytes, HO-1 up-regulation by transient transfection of the human ho-1 gene, or stimulation of endogenous HO-1 expression by exposure to beta-amyloid, TNF alpha or IL-1 beta, promotes intracellular oxidative stress, opening of the mitochondrial permeability transition pore and accumulation of non-transferrin iron in the mitochondrial compartment, and 3) the glial iron sequestration renders co-cultured neuron-like PC12 cells prone to oxidative injury. Induction of the astroglial ho-1 gene may constitute a 'common pathway' leading to pathological brain iron deposition, intracellular oxidative damage and bioenergetic failure in AD and other human CNS disorders. Hypothesis: Targeted suppression of glial HO-1 hyperactivity may prove to be a rational and effective neurotherapeutic intervention in AD and related neurodegenerative disorders. To begin testing this hypothesis, studies have been initiated to determine whether systemic administration of a novel, selective and brain-permeable inhibitor of HO-1 activity ameliorates cognitive dysfunction and neuropathology in a transgenic mouse model of AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据