4.2 Article

A closer look at α-secretase

期刊

CURRENT ALZHEIMER RESEARCH
卷 5, 期 2, 页码 179-186

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/156720508783954668

关键词

Alzheimer disease; alpha-secretase; ADAM; g Protein-coupled receptors

向作者/读者索取更多资源

Accumulation of amyloid beta-peptides (A beta) in the brain is believed to contribute to the development of Alzheimer disease (AD). A beta, a 40-42 amino acid-comprising proteolytical fragment of the amyloid precursor protein (APP), is released from APP by sequential cleavages via beta- and gamma-secretases. However, the predominant route of APP processing consists of successive cleavages by alpha- and gamma-secretases. Alpha-secretase attacks APP inside the A beta sequence, and therefore prevents formation of neurotoxic A beta. After cleavage by alpha-secretase, the soluble N-terminal domain of APP, which possesses neurotrophic and neuroprotective properties, is released. In AD patients, a decrease in alpha-secretase processing of APP has been found and therefore, strategies to improve alpha-secretase activity are obvious. Several years after descriptive reports on alpha-secretase, the responsible enzymes have been identified to belong to the family of A Disintegrin And Metalloproteinase (ADAM). Three of these membrane-anchored zinc-dependent metalloproteinases, ADAM10 as well as ADAM17 and presumably also ADAM9 display alpha-secretase activity. Since the individual knock-out of these proteinases in neither case completely prevented alpha-secretase processing of APP, it seems likely that different ADAMs are compensating mutually, and under different conditions may contribute to alpha-secretase cleavage of APP. In addition to ADAMs, perhaps other membrane-associated metalloproteinases contribute to the shedding of APP. Stimulation of alpha-secretase activities can be achieved via several signaling cascades including phospholipase C, phosphatidylinositol 3-kinase and serine/threonine-specific kinases such as protein kinases C, and mitogen activated protein kinases. Direct activation of protein kinase C and stimulation of distinct G protein-coupled receptors are known to increase alpha-secretase processing of APP. Agonists for M1 muscarinic acetylcholine receptors and serotonin 5-HT4 receptors are currently in clinical trials to test their efficiency in the treatment of AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据