4.5 Article Retracted Publication

被撤回的出版物: CXCL12/CXCR4 chemokine signaling in spinal glia induces pain hypersensitivity through MAPKs-mediated neuroinflammation in bone cancer rats (Retracted article. See vol. 141, pg. 473, 2017)

期刊

JOURNAL OF NEUROCHEMISTRY
卷 132, 期 4, 页码 452-463

出版社

WILEY
DOI: 10.1111/jnc.12985

关键词

astrocytes; bone cancer pain; chemokine; mitogen-activated protein kinase; microglia; neuroinflammation

资金

  1. natural science research project of Jiangsu Province Higher Education Institutions [12KJB320013]
  2. Ministry of Health of the People's Republic of China [W201203]

向作者/读者索取更多资源

The activation of MAPK pathways in spinal cord and subsequent production of proinflammatory cytokines in glial cells contribute to the development of spinal central sensitization, the basic mechanism underlying bone cancer pain (BCP). Our previous study showed that spinal CXCL12 from astrocytes mediates BCP generation by binding to CXCR4 in both astrocyters and microglia. Here, we verified that CXCL12/CXCR4 signaling contributed to BCP through a MAPK-mediated mechanism. In naive rats, a single intrathecal administration of CXCL12 considerably induced pain hyperalgesia and phosphorylation expression of spinal MAPK members (including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase), which could be partially prevented by pre-treatment with CXCR4 inhibitor AMD3100. This CXCL12-induced hyperalgesia was also reduced by MAPK inhibitors. In bone cancer rats, tumor cell inoculation into the tibial cavity caused prominent and persistent pain hyperalgesia, and associated with up-regulation of CXCL12 and CXCR4, activation of glial cells, phosphorylation of MAPKs, and production of proinflammatory cytokines in the spinal cord. These tumor cell inoculation-induced behavioral and neurochemical alterations were all suppressed by blocking CXCL12/CXCR4 signaling or MAPK pathways. Taken together, these results demonstrate that spinal MAPK pathways mediated CXCL12/CXCR4-induced pain hypersensitivity in bone cancer rats, which could be druggable targets for alleviating BCP and glia-derived neuroinflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据