4.7 Article

Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion

期刊

CRYSTENGCOMM
卷 15, 期 15, 页码 3022-3030

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ce27021a

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [21173045, 20903023]
  2. Award Program for Minjiang Scholar Professorship
  3. Natural Science Foundation of Fujian Province [2012J06003]
  4. Program for Changjiang Scholars and Innovative Research Team in Universities [PCSIRT0818]
  5. Program for Returned High-Level Overseas Chinese Scholars of Fujian Province
  6. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

A series of graphene-ZnO (GR-ZnO) nanorod nanocomposites with different weight addition ratios of graphene (GR) have been prepared via a facile hydrothermal reaction of graphene oxide (GO) and ZnO nanorods. X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), field-emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), photoluminescence (PL) spectra, and electron spin resonance (ESR) spectra are employed to determine the properties of the samples. It is found that GR-ZnO nanorod nanocomposites with a proper addition amount of GR exhibit higher photocatalytic activity and improved anti-photocorrosion than ZnO nanorods toward liquid-phase degradation of dye under ultraviolet (UV) light irradiation. The improved photoactivity and anti-photocorrosion of GR-ZnO nanorods can be ascribed to the integrative synergistic effect of enhanced adsorption capacity, the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between GR and ZnO nanorods. This study also shows that graphene sheets act as electronic conductive channels to efficiently separate the photogenerated charge carriers from ZnO nanorods. It is hoped that our current work could promote increasing interest in designing the nanocomposites of one-dimensional (1D) semiconductor and two-dimensional (2D) graphene for different photocatalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据