4.6 Article

Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

期刊

JOURNAL OF NEURAL ENGINEERING
卷 12, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/12/2/026003

关键词

neural prosthetics; cortical neural implants; brain-machine interface; microelectrode arrays; accelerated aging; electrochemical impedance spectroscopy; electron microscopy

资金

  1. Defense Advanced Research Projects Agency Microsystems Technology Office (DARPA, MTO)
  2. US Food and Drug Administration [FDA-DARPA 224-10-6006]

向作者/读者索取更多资源

Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 degrees C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies < 10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create structural damage and change electrical properties of MEAs. Broad-spectrum electrical impedance spectroscopy demonstrates increased sensitivity to electrode damage compared with single-frequency measurements. RAA can be a useful tool to simulate worst-case in vivo damage resulting from chronic electrode implantation, simplifying the device development lifecycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据