4.6 Article

User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control

期刊

JOURNAL OF NEURAL ENGINEERING
卷 12, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/12/4/046005

关键词

prosthesis control; user adaptation; pattern recognition; long-term myoelectric signal

资金

  1. National Basic Research Program (973 Program) of China [2011CB013305]
  2. Science and Technology Commission of Shanghai Municipality [13430721600]
  3. National Natural Science Foundation of China [51375296]
  4. European Commission [251555]

向作者/读者索取更多资源

Objective. Recent studies have reported that the classification performance of electromyographic (EMG) signals degrades over time without proper classification retraining. This problem is relevant for the applications of EMG pattern recognition in the control of active prostheses. Approach. In this study we investigated the changes in EMG classification performance over 11 consecutive days in eight able-bodied subjects and two amputees. Main results. It was observed that, when the classifier was trained on data from one day and tested on data from the following day, the classification error decreased exponentially but plateaued after four days for able-bodied subjects and six to nine days for amputees. The between-day performance became gradually closer to the corresponding within-day performance. Significance. These results indicate that the relative changes in EMG signal features over time become progressively smaller when the number of days during which the subjects perform the pre-defined motions are increased. The performance of the motor tasks is thus more consistent over time, resulting in more repeatable EMG patterns, even if the subjects do not have any external feedback on their performance. The learning curves for both able-bodied subjects and subjects with limb deficiencies could be modeled as an exponential function. These results provide important insights into the user adaptation characteristics during practical long-term myoelectric control applications, with implications for the design of an adaptive pattern recognition system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据