4.7 Article

Formation of High-Yield Gold Nanoplates on the Surface: Effective Two-Dimensional Crystal Growth of Nanoseed in the Presence of Poly(vinylpyrrolidone) and Cetyltrimethylammonium Bromide

期刊

CRYSTAL GROWTH & DESIGN
卷 9, 期 6, 页码 2835-2840

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cg900109x

关键词

-

资金

  1. Kyoto Nanotechnology Cluster Project
  2. Ministry of Education, Culture, Sports, Science and Technology, Japan
  3. Japan Society for the Promotion of Science (JSPS) Post-Doctoral Fellowship
  4. Universiti Kebangsaan Malaysia

向作者/读者索取更多资源

This paper reports a simple technique to grow high-yield gold nanoplates directly on the surface via an effective two-dimensional growth promotion of the attached nanoseeds in the presence of a binary surfactant mixture, namely, poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium bromide (CTAB). The gold nanoplates formation strongly depended on the concentration of PVP used in the solution, while the nanoplate size depended on the CTAB concentration. In a typical process with optimum PVP and CTAB concentrations, 60% of the nanocrystal product was nanoplates. Triangular nanoplates were found to be the major shape of the nanoplates with a yield of up to ca. 50%, while hexagonal or truncated-hexagonal and rounded-nanoplates shared up to ca. 30 and 20% of the nanoplates product, respectively. The nanoplates were characterized by a very thin structure with a thickness of less than 10 nm. The edge-length size of the nanoplates was found to be up to ca. 1 mu m. At optimum growth conditions, ca. 70% of the surface area was covered by nanoplates. X-ray diffraction results on the surface modified nanoplates samples indicated exceedingly high Au(111) peaks of gold nanocrystal without the presence of other peaks, such as (200) and (220), in the diffraction spectrum. The present approach may be used to produce a surface that contains unique nanostructured Au(111) crystallographic plane characteristics, which should find potential applications in catalysis, surface-enhanced Raman scattering, sensors and photonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据