4.3 Article

Analysis of supercooling activity of tannin-related polyphenols

期刊

CRYOBIOLOGY
卷 67, 期 1, 页码 40-49

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.cryobiol.2013.04.008

关键词

Supercooling; Freezing; Polyphenols; Tannins; Homogeneous and heterogeneous ice nucleation; Water molecules

资金

  1. Asahi Kasei Chemicals Corporation
  2. COSMO OIL LUBRICANTS Co., Ltd.
  3. Nisshin Seifun Group Inc.
  4. AMINO UP CHEMICAL Co., Ltd.
  5. Grants-in-Aid for Scientific Research [23580453] Funding Source: KAKEN

向作者/读者索取更多资源

Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p > 0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water molecules. In the present study, several TRPs that might be useful for applications due to their high SCA in many solutions were identified. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据