4.3 Article

Cryopreservation of rat MSCs by use of a programmed freezer with magnetic field

期刊

CRYOBIOLOGY
卷 67, 期 3, 页码 258-263

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.cryobiol.2013.08.003

关键词

MSCs; Cryopreservation; Magnetic field; CAS freezer

资金

  1. Ministry of Education, Science, Sports and culture of Japan [22792054]
  2. Grants-in-Aid for Scientific Research [22792054, 25463179] Funding Source: KAKEN

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) can be used for the regeneration of various tissues and cryopreservation of MSCs is so important for regenerative medicine. The purpose of this study was to evaluate the influences of cryopreservation on MSCs by use of a programmed freezer with a magnetic field (CAS freezer). MSCs were isolated from bone marrow of rat femora. The cells were frozen by a CAS freezer with 10% dimethyl sulfoxide (Me2SO) and cryopreserved for 7 days at a temperature of -150 degrees C. Immediately after thawing, the number of survived cells was counted. The cell proliferation also examined after 48 h culture. Next, MSCs were frozen by two different freezers; CAS freezer and a conventional programmed freezer without magnetic field. Then, osteogenic and adipogenic differentiations of cryopreserved cells were examined. As a result, survival and proliferation rates of MSCs were significantly higher in CAS freezer than in the non-magnetic freezer. Alizarin positive reaction, large amount of calcium quantification, and greater alkaline phosphatase activity were shown in both the non-cryopreserved and CAS groups after osteogenic differentiation. Moreover, Oil Red O staining positive reaction and high amount of PPAR gamma and FABP4 mRNAs were shown in both the non-cryopreserved and CAS groups after adipogenic differentiation. From these findings, it is shown that a CAS freezer can maintain high survival and proliferation rates of MSCs and maintain both adipogenic and osteogenic differentiation abilities. It is thus concluded that CAS freezer is available for cryopreservation of MSCs, which can be applied to various tissue regeneration. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据