4.6 Article

Quantitative assessment of somatosensory-evoked potentials after cardiac arrest in rats: Prognostication of functional outcomes

期刊

CRITICAL CARE MEDICINE
卷 38, 期 8, 页码 1709-1717

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CCM.0b013e3181e7dd29

关键词

cardiac arrest; prognosis; functional outcomes; somatosensory evoked potentials; eectrophysiology; quantitative neural monitoring

资金

  1. National Institutes of Health [RO1 HL071568]
  2. American Heart Association [09SDG1110140]

向作者/读者索取更多资源

Objective: High incidence of poor neurologic sequelae after resuscitation from cardiac arrest underscores the need for objective electrophysiological markers for assessment and prognosis. This study aims to develop a novel marker based on somatosensory evoked potentials (SSEPs). Normal SSEPs involve thalamocortical circuits suggested to play a role in arousal. Due to the vulnerability of these circuits to hypoxic-ischemic insults, we hypothesize that quantitative SSEP markers may indicate future neurologic status. Design: Laboratory investigation. Setting: University Medical School and Animal Research Facility. Subjects: Sixteen adult male Wistar rats. Interventions: None. Measurements and Main Results: SSEPs were recorded during baseline, during the first 4 hrs, and at 24, 48, and 72 hrs postasphyxia from animals subjected to asphyxia-induced cardiac arrest for 7 or 9 mins (n = 8/group). Functional evaluation was performed using the Neurologic Deficit Score (NDS). For quantitative analysis, the phase space representation of the SSEPs-a plot of the signal vs. its slope-was used to compute the phase space area bounded by the waveforms recorded after injury and recovery. Phase space areas during the first 85-190 mins postasphyxia were significantly different between rats with good (72 hr NDS >= 50) and poor (72 hr NDS <50) outcomes (p = .02). Phase space area not only had a high outcome prediction accuracy (80-93%, p < .05) during 85-190 mins postasphyxia but also offered 78% sensitivity to good outcomes without compromising specificity (83-100%). A very early peak of SSEPs that precedes the primary somatosensory response was found to have a modest correlation with the 72 hr NDS subscores for thalamic and brainstem function (p = .066) and not with sensory-motor function (p = .30). Conclusions: Phase space area, a quantitative measure of the entire SSEP morphology, was shown to robustly track neurologic recovery after cardiac arrest. SSEPs are among the most reliable predictors of poor outcome after cardiac arrest; however, phase space area values early after resuscitation can enhance the ability to prognosticate not only poor but also good long-term neurologic outcomes. (Crit Care Med 2010; 38: 1709-1717)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据