4.6 Review

The huge plastic potential of adult brain and the role of connectomics: New insights provided by serial mappings in glioma surgery

期刊

CORTEX
卷 58, 期 -, 页码 325-337

出版社

ELSEVIER MASSON, CORPORATION OFFICE
DOI: 10.1016/j.cortex.2013.08.005

关键词

Neuroplasticity; Brain connectomics; Serial mappings; Awake surgery; Direct electrical stimulation

向作者/读者索取更多资源

While prominent in the traditional literature, the localizationist and static view of brain processing does not explain numerous observations of functional recovery following cerebral damages. Here, the goal is to revisit this classical modular and inflexible model by proposing a dynamic organization of brain circuits, which allows postlesional cerebral adaptative phenomena able to maintain neurological and cognitive functions, even in adults. In this state of mind, recent data provided by serial mappings performed in patients who underwent awake surgery for diffuse glioma infiltrating eloquent structures will be reviewed. Firstly, the use of intraoperative electrical mapping enables the realization of online anatomo-functional correlations both at cortical and subcortical levels, supporting a network distribution of the brain, and resulting in the reappraisal of cognitive models - notably regarding language. Secondly, combination of neuropsychological assessments and functional neuroimaging before and after operation demonstrates that it is possible to achieve massive resections of critical regions without eliciting permanent sequelae, thanks to reorganization of cerebral circuits. Thirdly, repeated surgeries in cases of tumor relapse show functional remapping in the same patients over time. Taken together, these findings open the window toward a huge plastic potential of human central nervous system (CNS) in adults. However, a better understanding of cerebral connectomics leads to the conclusion that the white matter connectivity constitutes a main limitation of such brain plasticity, explaining the lack of recovery in patients with extensive subcortical damages. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据