4.7 Article

Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion

期刊

CORROSION SCIENCE
卷 73, 期 -, 页码 150-160

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.corsci.2013.04.004

关键词

Steel; Modelling studies; Stress corrosion

资金

  1. Canada Research Chairs Program
  2. Pipeline Engineering Center of the University of Calgary through the IPCF Research Grant Program

向作者/读者索取更多资源

In this work, a finite element model was developed to study mechanoelectrochemical effect of pipeline corrosion through a multiphysics field coupling technique. The modeling results, i.e., corrosion potential and corrosion current density, are well consistent with experimental measurements on pipeline steel in a near-neutral pH solution. It is demonstrated that, while a tensile strain enhances stress uniformly through pipe wall, an increasing depth of corrosion defect results in a concentrated stress at the defect center only. When the corrosion defect is under an elastic deformation, there is no apparent effect of mechanical-electrochemical interaction on corrosion. However, when the applied tensile strain or the geometry of corrosion defect is sufficient to cause a plastic deformation at the defect, the local corrosion activity is increased remarkably. Corrosion at the defect is composed of a series of local galvanic cells, where the region with a higher stress, such as the defect bottom, serves as anode, and that under lower stress, such as the defect sides, as cathode. The locally accelerated corrosion at the defect center can be further enhanced as the corrosion defect deepens. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据