4.7 Article

Computational design and optimization of multilayered and functionally graded corrosion coatings

期刊

CORROSION SCIENCE
卷 77, 期 -, 页码 297-307

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.corsci.2013.08.018

关键词

Cathodic protection; Modeling studies

向作者/读者索取更多资源

This paper describes a computational approach to analysis and optimization of compositionally graded coatings for cathodic protection. Time-dependent galvanic corrosion is simulated by coupling a finite element electrochemical model with calculated rates of metal dissolution. A simulated annealing optimization algorithm is applied to the time-dependent corrosion model to determine coating structures that maximize desired protective qualities. This computational approach to coating design is applied to a hypothetical graded zinc-alloy coating with a circular defect on an iron substrate, in an aerated NaCl electrolyte. A linear compositional gradient increases the predicted duration of cathodic protection by 84% over an equivalent monolithic coating, while the optimized coating structure further improves protection time to a total increase of 112%. The optimized coating structure consists of a thin barrier layer adjacent to the substrate, with a thicker sacrificial layer on the exterior and a short region of graded composition in between. The overall approach to optimization of coating structure is shown to be robust, efficient, and produce non-obvious designs with significant improvement in coating performance, and thus has potential to be of significant utility in practical corrosion coating design. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据