4.8 Review

Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications

期刊

COORDINATION CHEMISTRY REVIEWS
卷 257, 期 13-14, 页码 2120-2141

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ccr.2012.10.020

关键词

Metal organic vapor phase epitaxy; Metal organic chemical vapor deposition; Gallium nitride; Aluminum nitride; Indium nitride; Light-emitting diode

资金

  1. EPSRC

向作者/读者索取更多资源

This article reviews metal organic vapour phase epitaxy (MOVPE) processes developed for the group 13 nitrides AlN, GaN, InN and their alloys. The binaries are direct-gap semiconductors with respective bandgaps of 6.1 eV for AlN, 3.4 eV for GaN, and similar to 0.6 eV for InN, and adopt the hexagonal wurtzite crystal structure. The nitrides form continuous solid solutions, and are capable of being both n- and p-doped, thus making possible the growth of advanced heterostructure devices exemplified by GaN-based visible light-emitting diodes. Interest in nitride MOVPE from the late 1980s motivated significant work on single-source precursors, and also thermally labile nitrogen sources for use in two-source processes. The best developed of the former are azido compounds, which can have properties well tailored for low-temperature film deposition. However, the nitride MOVPE processes that have come to dominate device manufacturing since the mid-1990s depend on the reaction between ammonia and metal alkyl sources, and deposit GaN at temperatures usually above 1000 degrees C. Most current nitride growth is performed heteroepitaxially on sapphire (0 0 0 1) substrates, for which appropriate multistep growth initiation processes have been optimised. Current designs of nitride MOVPE reactor are engineered to avoid premature contact between the group 13 sources and ammonia, and feature in situ monitoring by optical means. The mechanisms of the growth chemistry are now understood to the extent that they are handled explicitly in multi-scale computational simulations of full processes. Particular recent advances in mechanistic understanding concern the role of nanoparticles that form in the gas phase, and which represent an important precursor loss channel. Methodologies for controlling the composition and properties of layers of GaN itself, and of ternary alloy layers with moderate (<25 mole%) contents of InN or AlN, are well established. However, greater challenges are posed by growth of layers InN, AlN, and of alloys close to these two binaries in composition. New variants of MOVPE continue to be explored as a consequence, and include processes with pulsed alternating precursor introduction to enhance lateral migration of adatoms on the surface of the growing film. A further important new emphasis in recent years is the controlled growth of nanowire and nanorod arrays, which already include core-shell heterostructures of considerable sophistication. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据