4.6 Article

Nonlinear disturbance observer design for robotic manipulators

期刊

CONTROL ENGINEERING PRACTICE
卷 21, 期 3, 页码 253-267

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2012.10.008

关键词

Nonlinear disturbance observer (NLDO); Robotic manipulator; Disturbance rejection; Position control; Force control; Linear matrix inequality (LMI)

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Robotic manipulators are highly nonlinear and coupled systems that are subject to different types of disturbances such as joint frictions, unknown payloads, varying contact points, and unmodeled dynamics. These disturbances, when unaccounted for, adversely affect the performance of the manipulator. Employing a disturbance observer is a common method to reject such disturbances. In addition to disturbance rejection, disturbance observers can be used in force control applications. Recently, research has been done regarding the design of nonlinear disturbance observers (NLDOs) for robotic manipulators. In spite of good results in terms of disturbance tracking, the previously designed nonlinear disturbance observers can merely be used for planar serial manipulators with revolute joints [Chen, W. H., Ballance, D. J., Gawthorp, P. J., O'Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47 (August (4)), 932-938; Nikoobin, A., Haghighi, R. (2009). Lyapunov-based nonlinear disturbance observer for serial n-link manipulators. Journal of Intelligent & Robotic Systems, 55 (July (2-3)), 135-153]. In this paper, a general systematic approach is proposed to solve the disturbance observer design problem for robotic manipulators without restrictions on the number of degrees-of-freedom (DOFs), the types of joints, or the manipulator configuration. Moreover, this design method does not need the exact dynamic model of the serial robotic manipulator. This method also unifies the previously proposed linear and nonlinear disturbance observers in a general framework. Simulations are presented for a 4-DOF SCARA manipulator to show the effectiveness of the proposed disturbance observer design method. Experimental results using a PHANToM Omni haptic device further illustrate the effectiveness of the design method. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据