4.6 Article Proceedings Paper

Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network

期刊

CONTROL ENGINEERING PRACTICE
卷 20, 期 4, 页码 465-476

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2012.01.001

关键词

Dissolved oxygen concentration control; Self-organizing radial basis function; Model predictive control; Wastewater treatment process; Benchmark simulation model 1

向作者/读者索取更多资源

The dissolved oxygen (DO) concentration in activated sludge wastewater treatment processes (WWTPs) is difficult to control because of the complex nonlinear behavior involved. In this paper, a self-organizing radial basis function (RBF) neural network model predictive control (SORBF-MPC) method is proposed for controlling the DO concentration in a WWTP. The proposed SORBF can vary its structure dynamically to maintain prediction accuracy. The hidden nodes in the RBF neural network can be added or removed on-line based on node activity and mutual information (MI) to achieve the appropriate network complexity and the necessary dynamism. Moreover, the convergence of the SORBF is analyzed in both the dynamic process phase and the phase following the modification of the structure. Finally, the SORBF-MPC is applied to the Benchmark Simulation Model 1 (BSM1) WWTP to maintain the DO concentration. The results show that SORBF-MPC effectively provides process control. The performance comparison also indicates that the proposed model's predictive control strategy yields the most accurate for DO concentration, better effluent qualities, and lower average aeration energy (AE) consumption. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据