4.6 Article

A novel method for non-linear control of wheel slip in anti-lock braking systems

期刊

CONTROL ENGINEERING PRACTICE
卷 18, 期 8, 页码 918-926

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2010.03.015

关键词

Anti-lock brake system; Non-linear control; Optimization; Robustness; Wheel slip

向作者/读者索取更多资源

Anti-lock braking system (ABS) provides active safety for vehicles during braking by regulation of the wheel slip at its optimum value. Due to the non-linear characteristics and model uncertainties in vehicle dynamics, a non-linear controller with increased robustness should be designed for ABS. In this paper, to achieve this aim, an optimization-based braking torque control law is developed for ABS using the prediction of the wheel slip response from a continuous non-linear vehicle dynamics model. To increase the robustness of the controller, the integral feedback technique is appended to the design method. The derived control law and its special cases are evaluated and discussed. At the end, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of braking on dry and slippery roads. The simulation results indicate that, the wheel slip tracking error is remarkably decreased by the proposed controller. Moreover, the achieved control input is entirely smooth and suitable for implementation. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据