4.5 Editorial Material

Application of the Ti-in-quartz thermobarometer to rutile-free systems. Reply to: a comment on: 'TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz' by Thomas et al.

期刊

CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
卷 164, 期 2, 页码 369-374

出版社

SPRINGER
DOI: 10.1007/s00410-012-0761-5

关键词

Ti-in-quartz; Thermobarometry; Thermometry; Trace elements; Quartz

向作者/读者索取更多资源

The premise of the Wilson et al. comment is that the Ti-in-quartz solubility calibration (Thomas et al. in Contrib Mineral Petrol 160:743-759, 2010) is fundamentally flawed. They reach this conclusion because P-T estimates using the Ti-in-quartz calibration differ from their previous interpretations for crystallization conditions of the Bishop and Oruanui rhyolites. If correct, this assertion has far-reaching implications, so a careful assessment of the Wilson et al. reasoning is warranted. Application of the Ti-in-quartz calibration as a thermobarometer in rutile-free rocks requires an estimation of TiO2 activity in the liquid ( (liquid-rutile); referenced to rutile saturation) and an independent constraint on either P or T to obtain the crystallization temperature or pressure, respectively. The foundation of Wilson et al.'s argument is that temperature estimates obtained from Fe-Ti oxide thermometry accurately reflect crystallization conditions of quartz in the two rhyolites discussed. We maintain that our experimental approach is sound, the thermodynamic basis of the Ti-in-quartz calibration is fundamentally correct, and our experimental results are robust and reproducible. We suggest that the reason Wilson et al. obtain implausible pressure estimates is because estimates for T and they used as input values for the Ti-in-quartz calibration are demonstrably too high. Numerous studies show that Fe-Ti oxide temperature estimates of some rhyolites are substantially higher than those predicted by well-constrained phase equilibria. In this reply, we show that when reasonable input values for T and (liquid-rutile) are used, pressure estimates obtained from the Ti-in-quartz calibration are well aligned with phase equilibria and essentially identical to melt inclusion volatile saturation pressures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据