4.5 Article

Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites

期刊

CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
卷 157, 期 3, 页码 327-338

出版社

SPRINGER
DOI: 10.1007/s00410-008-0337-6

关键词

Serpentinite; Deformation; Kinking; Olivine; Talc; HRTEM

向作者/读者索取更多资源

High-T torsion experiments on lizardite + chrysotile serpentinites produced mineralogical and micro/nanostructural changes, with important implications in rheological properties. High-resolution TEM showed that specimens underwent ductile [by microkinking and (001) interlayer glide] and brittle deformation (by microfracturing), together with dehydration and break-down reactions. Lizardite is affected by polytypic disorder and microkinking [kink axial planes at high angle with respect to (001) planes], that were not present in the initial ordered 1T-lizardite. Chrysotile fibres are deformed, resulting in elliptical cross-sections, with strong loss of interlayer cohesion. Both lizardite and chrysotile break down to a fine intergrowth of olivine (up to 200 nm), talc (up to 30 nm) and poorly-crystalline material. Lizardite-out reaction preferentially occurs at kink axial planes, representing sites of preferential strain and enhanced reactivity; conversely, chrysotile break-down is a bulk process, resulting in large healed olivine aggregates, up to micrometric in size. Overall observations suggest that dehydration and break-down reactions are more advanced in chrysotile than in lizardite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据