4.1 Article

Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study

期刊

CONTRAST MEDIA & MOLECULAR IMAGING
卷 3, 期 6, 页码 223-232

出版社

WILEY-HINDAWI
DOI: 10.1002/cmmi.256

关键词

cells; nanoparticles; iron oxide; magnetic labeling

向作者/读者索取更多资源

Small particles of iron oxide (SPIO) and ultrasmall particles of iron oxide (USPIO), inducing a strong negative contrast on T-2 and T-2*-weighted MR images, are the most commonly used systems for the magnetic labeling of cultured cells and their subsequent detection by magnetic resonance imaging (MRI). The purpose of this work is to study the influence of iron incubation concentration, nanoparticle size and nanoparticle coating on the magnetic labeling and the viability of non-phagocytic adherent cells in culture. The magnetic labeling of 3T6 fibroblasts was studied by T-2-weighted MRI at 4.7T and by dosing-or cytochemical revealing-of iron through methods based on Perl's Prussian blue staining. Cells were incubated for 48 h with increasing iron concentrations of SPIO (25-1000 mu g Fe/ml Endorem(R)). Sinerem(R), a USPIO (20-40 nm) coated with neutral dextran, and Resovist(R) (65 nm), a SPIO bearing an anionic carboxydextran coating, were compared with Endorem(R) (dextran-coated, 80-150 nm) as magnetic tags. The iron loading of marrow stromal cell primary cultures (MSCs) isolated from rat femurs was compared with that of 3T6 fibroblasts. The SPIO-labeling of cells with Endorem(R) was found to be dependent on the iron incubation concentration. MSCs, more sparsely distributed in the culture, exhibited higher iron contents than more densely populated 3T6 fibroblast cultures. A larger iron loading was achieved with Resovist(R) than with Endorem(R), which in turn was more efficient than Sinerem(R) as a magnetic tag. The magnetic labeling of cultured non-phagocytic adherent cells with iron oxide nanoparticles was thus found to be dependent on the relative concentration of the magnetic tag and of the cells in culture, on the nanoparticle size, and on the coating type. The viability of cells, estimated by methods assessing cell membrane permeability, was not affected by magnetic labeling in the conditions used in this work. Copyright (C) 2008 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据