4.7 Article

Carbon dioxide activated ladle slag binder

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 66, 期 -, 页码 214-221

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2014.05.063

关键词

Ladle slag; Carbon dioxide activation; Heat treatment; Strength; Waste glass

资金

  1. Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)

向作者/读者索取更多资源

The viability of converting steelmaking ladle slag into cementing binder through carbon dioxide activation was studied. Two typical ladle slag materials were examined: one with higher silica content and one with higher alumina content. It was found that ladle slag with higher silica content contained more calcium silicate compounds and less free lime, leading to higher carbonation reactivity in its as-received form. Ladle slag with higher alumina could not be activated directly by carbon dioxide to gain strength. Heat treatment with silica addition was thus developed to produce more calcium silicates and reduce free lime content. Findings reveal that carbonation reactivity is not solely based on chemical compositions of the material, rather, the constituting mineralogical phases. Calcium silicates of any polymorph played a critical role in the formation of the strength-contributing binder matrix activated by carbonation. Strength gain was the result of simultaneous formation of calcium silicate hydrates and calcium carbonates. To produce value-added ladle slag as cementing binder to replace Portland cement, silicon is recommended as deoxidation agent in steel refinery process. The building products based on carbonation activated ladle slag have shown much reduced embodied energy and much reduced natural material consumption. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据