4.3 Article

Effects of urbanization on Song Sparrow (Melospiza melodia) population connectivity

期刊

CONSERVATION GENETICS
卷 14, 期 1, 页码 41-53

出版社

SPRINGER
DOI: 10.1007/s10592-012-0422-2

关键词

Urban ecology; Avian population biology; Landscape genetics; Bird dispersal; Landscape resistance; Least cost path analysis

资金

  1. National Science Foundation
  2. NSF [DEB-9875041, BCS0120024, BCS 0508002, IGERT0114351]
  3. Achievement Rewards for College Scientists Seattle Chapter
  4. University of Washington College of Forest Resources

向作者/读者索取更多资源

Urbanization may affect genetic differentiation among animal populations because it converts native vegetation to novel land cover types that can affect population connectivity. The effect of land cover change on genetic differentiation may vary among taxa; mobile birds may be least affected. Regardless, genetic differentiation between populations should be best predicted by measures of distance that incorporate the effect of land cover on movement. We studied the relationship between land cover and genetic differentiation in Song Sparrows (Melospiza melodia) at eighteen sites in the Seattle metropolitan region. We generated a series of hypothetical resistance surfaces based on land cover and development age, calculated resistance distances between pairs of sampling sites, and related them to pairwise genetic differentiation. Genetic differentiation was best described by a multiple regression model where resistance to gene flow (1) linearly increased with age of development and (2) was greater in high- and medium-density urbanization than in native forest land cover types (R (2) = 0.15; p = 0.003). The single variable with the highest correlation with genetic differentiation was derived from a linear relationship between development age and resistance (R (2) = 0.08; p = 0.007). Our results thus suggested that urban development reduced population connectivity for Song Sparrows. However, the relation of development age to genetic differentiation suggested that equilibrium was not yet reached. Hence, the effects of lost connectivity will increase. Our understanding of the landscape genetics of this recently anthropogenically modified landscape benefited from considering population history.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据