4.7 Article

Heartbeat classification using disease-specific feature selection

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 46, 期 -, 页码 79-89

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2013.11.019

关键词

Feature selection; Disease specific; Heartbeat classification; Support vector machine

资金

  1. National Natural Science Foundation of China [61103128]
  2. China Postdoctoral Science Foundation [2013M541601]
  3. Jiangsu Planned Projects for Postdoctoral Research Funds [1201043C, 1301079C]
  4. General Research Fund of the Hong Kong Research Grants Council [PolyU 5134/12E]

向作者/读者索取更多资源

Automatic heartbeat classification is an important technique to assist doctors to identify ectopic heartbeats in long-term Holter recording. In this paper, we introduce a novel disease-specific feature selection method which consists of a one-versus-one (OvO) features ranking stage and a feature search stage wrapped in the same OvO-rule support vector machine (SVM) binary classifier. The proposed method differs from traditional approaches in that it focuses on the selection of effective feature subsets for distinguishing a class from others by making OvO comparison. The electrocardiograms (ECG) from the MIT-BIH arrhythmia database (MIT-BIH-AR) are used to evaluate the proposed feature selection method. The ECG features adopted include inter-beat and intra-beat intervals, amplitude morphology, area morphology and morphological distance. Following the recommendation of the Advancement of Medical Instrumentation (AAMI), all the heartbeat samples of MIT-BIH-AR are grouped into four classes, namely, normal or bundle branch block (N), supraventricular ectopic (S), ventricular ectopic (V) and fusion of ventricular and normal (F). The division of training and testing data complies with the inter-patient schema. Experimental results show that the average classification accuracy of the proposed feature selection method is 86.66%, outperforming those methods without feature selection. The sensitivities for the classes N, S, V and F are 88.94%, 79.06%, 85.48% and 93.81% respectively, and the corresponding positive predictive values are 98.98%, 35.98%, 92.75% and 13.74% respectively. In terms of geometric means of sensitivity and positive predictivity, the proposed method also demonstrates better performance than other state-of-the-art feature selection methods. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据