4.7 Article

Coupled particulate and continuum model for nanoparticle targeted delivery

期刊

COMPUTERS & STRUCTURES
卷 122, 期 -, 页码 128-134

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2012.12.019

关键词

Adhesion kinetics; Brownian dynamics; Convection-diffusion-reaction model; Particulate-continuum coupled model; Nanoparticle

资金

  1. National Institute of Health [EB009786]
  2. National Science Foundation [CBET-1113040]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1113040] Funding Source: National Science Foundation

向作者/读者索取更多资源

Prediction of nanoparticle (NP) distribution in a vasculature involves transport phenomena at various scales and is crucial for the evaluation of NP delivery efficiency. A combined particulate and continuum model is developed to model NP transport and delivery processes. In the particulate model ligand-receptor binding kinetics is coupled with Brownian dynamics to study NP binding on a microscale. An analytical formula is derived to link molecular level binding parameters to particulate level adhesion and detachment rates. The obtained NP adhesion rates are then coupled with a convection-diffusion-reaction model to study NP transport and delivery at macroscale. The binding results of the continuum model agree well with those from the particulate model. The effects of shear rate, particle size and vascular geometry on NP adhesion are investigated. Attachment rates predicted by the analytical formula also agree reasonably well with the experimental data reported in literature. The developed coupled model that links ligand-receptor binding dynamics to NP adhesion rate along with macroscale transport and delivery processes may serve as a faster evaluation and prediction tool to determine NP distribution in complex vascular networks. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据