4.7 Review

Computational methods for bird strike simulations: A review

期刊

COMPUTERS & STRUCTURES
卷 89, 期 23-24, 页码 2093-2112

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2011.08.007

关键词

Bird strike simulation; Soft body impact; Fluid-structure interaction; Lagrangian; Eulerian; SPH

向作者/读者索取更多资源

Bird strikes are a major threat to aircraft structures, as a collision with a bird during flight can lead to serious structural damage. Computational methods have been used for more than 30 years for the bird-proof design of such structures, being an efficient tool compared to the expensive physical certification tests with real birds. At the velocities of interest, the bird behaves as a soft body and flows in a fluid-like manner over the target structure, with the high deformations of the spreading material being a major challenge for finite element simulations. This paper gives an overview on the development, characteristics and applications of different soft body impactor modeling methods by an extensive literature survey. Advantages and disadvantages of the most established techniques, which are the Lagrangian, Eulerian or meshless particle modeling methods, are highlighted and further topics like the appropriate choice of impactor geometry or material model are discussed. A tabular overview of all bird strike simulation papers covered by this survey with detailed information on the software, modeling method, impactor geometry, mass and velocity as well as the target application of each study is given in the appendix of this paper. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据