4.5 Article

Complexity of the critical node problem over trees

期刊

COMPUTERS & OPERATIONS RESEARCH
卷 38, 期 12, 页码 1766-1774

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cor.2011.02.016

关键词

Complexity; Critical node problem; Multicut in trees; Dynamic programming

向作者/读者索取更多资源

In this paper we deal with the critical node problem (CNP), i.e., the problem of searching for a given number K of nodes in a graph G, whose removal minimizes the (weighted or unweighted) number of connections between pairs of nodes in the residual graph. In particular, we study the case where the physical network represented by graph G has a hierarchical organization, so that G is a tree. The NP-completeness of this problem for general graphs has been already established (Arulselvan et al.). We study the subclass of CNP over trees, generalizing the objective function and constraints to take into account general nonnegative costs of node connections and weights for the nodes that are to be removed. We prove that CNP over trees is still NP-complete when general connection costs are specified, while the cases where all connections have unit cost are solvable in polynomial time by dynamic programming approaches. For the case with nonnegative connection costs and unit node weights we propose an enumeration scheme whose time complexity is within a polynomial factor from 0(1.618034), where n is the number of nodes of the tree. Results from computational experiments are reported for all the proposed algorithms. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据