4.7 Article

Stable calculation of Gaussian-based RBF-FD stencils

期刊

COMPUTERS & MATHEMATICS WITH APPLICATIONS
卷 65, 期 4, 页码 627-637

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.camwa.2012.11.006

关键词

RBF; Radial basis functions; RBF-FD; RBF-GA; III-conditioning; Gaussians

资金

  1. NSF [DMS-0611681, DMS-0914647, ATM-0620100, DMS-0934317]
  2. Goran Gustafsson Foundation
  3. Division Of Mathematical Sciences
  4. Direct For Mathematical & Physical Scien [0914647] Funding Source: National Science Foundation

向作者/读者索取更多资源

Traditional finite difference (FD) methods are designed to be exact for low degree polynomials. They can be highly effective on Cartesian-type grids, but may fail for unstructured node layouts. Radial basis function-generated finite difference (RBF-FD) methods overcome this problem and, as a result, provide a much improved geometric flexibility. The calculation of RBF-FD weights involves a shape parameter epsilon. Small values of epsilon (corresponding to near-flat RBFs) often lead to particularly accurate RBF-FD formulas. However, the most straightforward way to calculate the weights (RBF-Direct) becomes then numerically highly ill-conditioned. In contrast, the present algorithm remains numerically stable all the way into the epsilon -> 0 limit. Like the RBF-QR algorithm, it uses the idea of finding a numerically well-conditioned basis function set in the same function space as is spanned by the ill-conditioned near-flat original Gaussian RBFs. By exploiting some properties of the incomplete gamma function, it transpires that the change of basis can be achieved without dealing with any infinite expansions. Its strengths and weaknesses compared with the Contour-Pade, RBF-RA, and RBF-QR algorithms are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据