4.7 Article

Fractional calculus models of complex dynamics in biological tissues

期刊

COMPUTERS & MATHEMATICS WITH APPLICATIONS
卷 59, 期 5, 页码 1586-1593

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.camwa.2009.08.039

关键词

Fractional calculus; Dynamics; Impedance; Viscosity; Stress

向作者/读者索取更多资源

Fractional (non-integer order) calculus can provide a concise model for the description of the dynamic events that occur in biological tissues. Such a description is important for gaining an understanding of the underlying multiscale processes that occur when, for example, tissues are electrically stimulated or mechanically stressed. The mathematics of fractional calculus has been applied successfully in physics, chemistry, and materials science to describe dielectrics, electrodes and viscoelastic materials over extended ranges of time and frequency. In heat and mass transfer, for example, the half-order fractional integral is the natural mathematical connection between thermal or material gradients and the diffusion of heat or ions. Since the material properties of tissue arise from the nanoscale and microscale architecture of subcellular, cellular, and extracellular networks, the challenge for the bioengineer is to develop new dynamic models that predict macroscale behavior from microscale observations and measurements. In this paper we describe three areas of bioengineering research (bioelectrodes, biomechanics, bioimaging) where fractional calculus is being applied to build these new mathematical models. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据