4.5 Article

A multi-front eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency ablation

期刊

COMPUTERS & GRAPHICS-UK
卷 35, 期 2, 页码 431-440

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cag.2011.01.008

关键词

Medical interactive simulation; Modelling of the heart; Haptic device

向作者/读者索取更多资源

Virtual reality-based therapy simulation meets a growing interest from the medical community due to its potential impact for the training of medical residents and the planning of therapies. However, computer models of the human anatomy are often very computationally demanding, thus incompatible with the constraints of such interactive simulations. In this paper, we propose a fast model of the cardiac electrophysiology based on an eikonal formulation implemented with an anisotropic fast marching method. We demonstrate the use of this model in the context of a simulator of radio-frequency ablation of cardiac arrhythmia from patient-specific medical imaging data. Indeed, this therapy can be very effective for patients but still suffers from a rather low success rate. Being able to test different ablation strategies on a patient-specific model can have a great clinical impact. In our setting, thanks to a haptic 3D user interface, the user can interactively measure the local extracellular potential, pace locally the myocardium or simulate the burning of cardiac tissue as done in radio-frequency ablation interventions. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据