4.7 Article

XMapTools: A MATLAB (c)-based program for electron microprobe X-ray image processing and geothermobarometry

期刊

COMPUTERS & GEOSCIENCES
卷 62, 期 -, 页码 227-240

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2013.08.010

关键词

XMapTools program; X-ray chemical imaging; Quantitative micro-mapping; PT-maps

资金

  1. French ANR

向作者/读者索取更多资源

XMapTools is a MATLAB(C)-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure-temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure-temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to 165,000 analyses yield estimates for the eclogitic pressure-temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressuretemperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure-temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据