4.5 Article

Analysis of the performances of a marine propeller operating in oblique flow

期刊

COMPUTERS & FLUIDS
卷 75, 期 -, 页码 86-102

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2013.01.017

关键词

Computational methods; Marine engineering; Propeller off-design performance; Propeller in-plane loads

资金

  1. Italian Ministry of Education, University and Research

向作者/读者索取更多资源

The present work is aimed to assess the capability of a numerical code based on the solution of the Reynolds averaged Navier-Stokes equations for the study of propeller functioning in off design conditions; this aspect is becoming of central interest in naval hydrodynamics research because of its crucial implications on design aspects and performance analysis of the vessel during its operational life. A marine propeller working in oblique flow conditions is numerically simulated by the unsteady Reynolds averaged Navier-Stokes equations (uRaNSe) and a dynamically overlapping grid approach. The test case considered is the CNR-INSEAN E779A propeller model. Two different loading conditions have been analyzed at different incidence angles (10-30 degrees) in order to characterize the propeller performance during idealized off-design conditions, similar to those experienced during a tight manoeuvre. The main focus is on hydrodynamic loads (forces and moments) that act on a single blade, on the hub and on the complete propeller; peculiar characteristics of pressure distribution on the blade and downstream wake will be presented as well. Verification of the numerical computations have been assessed by grid convergence analysis. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据