4.5 Article

Immersed boundary finite elements for 3D flow simulations in twin-screw extruders

期刊

COMPUTERS & FLUIDS
卷 87, 期 -, 页码 2-11

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2012.06.025

关键词

Immersed boundary method; Twin-screw extruders; Finite elements; Non-body-conformal mesh; Body conformal enrichment

向作者/读者索取更多资源

This paper presents applications of a recently proposed Immersed Boundary (IB) method to the solution of the flow around moving and complex shaped surfaces, in particular inside twin-screw extruders. Solving the flow around rotating screw elements implies significant changes in the computational topology at every time step. Using multiple meshes or adaptive methods to tackle these would require extensive meshing and interpolation work that has to be repeated each time step. Mesh generation and solution interpolation between successive grids may be costly and may introduce errors if the geometry changes significantly during the course of the computation. These drawbacks are avoided when the solution algorithm can tackle grids that do not fit the shape of immersed objects. In this work a fixed mesh is used covering both the fluid and solid regions, and the boundary of immersed objects is defined using a time dependent level-set function. The Body Conformal Enrichment (BCE) method is used to accurately impose boundary conditions on the surface of immersed bodies. The proposed algorithm enriches the finite element discretization of interface elements with additional degrees of freedom, the latter being eliminated at element level. Numerical applications are shown in which the flow inside twin-screw extruders is computed for multiple screw elements. A generalized non-Newtonian fluid is used to model molten polymer. Solutions will be shown for various rotation velocities of the screw as the viscosity depends on the shear rate. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据