4.7 Article

Metabolic Regulation of the Ultradian Oscillator Hes1 by Reactive Oxygen Species

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 427, 期 10, 页码 1887-1902

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2015.03.007

关键词

-

资金

  1. Italian Telethon Foundation Grant [TGM11SB1]
  2. Human Frontiers Science Programme Grant [RGP0020/2011]
  3. Italian National Research Center Flagship Project EPIGEN

向作者/读者索取更多资源

Ultradian oscillators are cyclically expressed genes with a period of less than 24 h, found in the major signalling pathways. The Notch effector hairy and enhancer of split Hes genes are ultradian oscillators. The physiological signals that synchronise and entrain Hes oscillators remain poorly understood. We investigated whether cellular metabolism modulates Hes1 cyclic expression. We demonstrated that, in mouse myoblasts (C2C12), Hes1 oscillation depends on reactive oxygen species (ROS), which are generated by the mitochondria electron transport chain and by NADPH oxidases NOXs. In vitro, the regulation of Hes1 by ROS occurs via the calcium-mediated signalling. The modulation of Hes1 by ROS was relevant in vivo, since perturbing ROS homeostasis was sufficient to alter Medaka (Oryzias latipes) somitogenesis, a process that is dependent on Hes1 ultradian oscillation during embryo development. Moreover, in a Medaka model for human microphthalmia with linear skin lesions syndrome, in which mitochondrial ROS homeostasis was impaired, we documented important somitogenesis defects and the deregulation of Hes homologues genes involved in somitogenesis. Notably, both molecular and developmental defects were rescued by antioxidant treatments. Our studies provide the first evidence of a coupling between cellular redox metabolism and an ultradian biological oscillator with important pathophysiological implication for somitogenesis. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据