4.5 Article

A front-tracking lattice Boltzmann method to study flow-induced deformation of three-dimensional capsules

期刊

COMPUTERS & FLUIDS
卷 39, 期 3, 页码 499-511

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2009.10.003

关键词

Fluid-structure interaction; Three-dimensional capsule deformation; Viscosity ratio; Multi-block lattice Boltzmann method; Front-tracking method; Finite element model

向作者/读者索取更多资源

In this paper, a hybrid method is proposed to study the flow-induced deformation of three-dimensional capsules. The capsules consist of Newtonian liquid drops enclosed by thin elastic membranes. In the proposed approach, the front-tracking method is coupled with the lattice Boltzmann method. The fluids inside and outside the capsule is treated as one fluid with varying physical properties, and is modeled by the lattice Boltzmann equation. The capsule membrane is explicitly tracked by the membrane nodes that are advected by the flow. The multi-block strategy of the lattice Boltzmann method is employed to refine the mesh near the capsule, which greatly increase the accuracy and efficiency of the three-dimensional computation. The capsule membrane is discretized into unstructured flat triangular elements, and a finite element model is incorporated to account for the membrane mechanics. With the present method, the transient deformation of initially spherical capsules with membrane following Neo-Hookean constitutive laws is simulated in shear now, under various dimensionless shear rates and ratios of internal to surrounding liquid viscosities. The present results, including the Taylor shape parameter, the capsule inclination angle and the tank-treading frequency, agree well with previously published numerical results. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据