4.5 Article

Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: A numerical study

期刊

COMPUTERS & FLUIDS
卷 38, 期 4, 页码 950-964

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2008.10.005

关键词

-

资金

  1. British Heart Foundation 2006-2007 at the University of Glasgow, UK [PG/06/029/20577]

向作者/读者索取更多资源

The effect of tube spacing on the vortex shedding characteristics and fluctuating forces in an inline cylinder array is studied numerically. The examined Reynolds number is 100 and the flow is laminar. The numerical methodology and the code employed to solve the Navier-Stokes and continuity equations in an unstructured finite volume grid are validated for the case of flow past two tandem cylinders at four spacings. Computations are then performed for a six-row inline tube bank for eight pitch-to-diameter ratios, s, ranging from 2.1 to 4. At the smallest spacing examined (s = 2.1) there are five stagnant and symmetric recirculation zones and weak vortex shedding activity occurs only behind the last cylinder. As s increases, the symmetry of the recirculation zones breaks leading to vortex shedding and this process progressively moves upstream, so that for s = 4 there is clear shedding from every row. For any given spacing, the shedding frequency behind each cylinder is the same. A critical spacing range between 3.0 and 3.6 is identified at which the mean drag as well as the rms lift and drag coefficients for the last three cylinders attain maximum values. Further increase to s = 4 leads to significant decrease in the force statistics and increase in the Strouhal number. It was found that at the critical spacing there is 180 degrees phase difference in the shedding cycle between successive cylinders and the vortices travel a distance twice the tube spacing within one period of shedding. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据