4.7 Article

Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) Has 3′ RNA Phosphatase and 3′ Exoribonuclease Activities

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 427, 期 2, 页码 298-311

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2014.12.001

关键词

APE1; RNA; 3 ' RNA phosphatase

资金

  1. Natural Sciences and Engineering Research Council [227158]

向作者/读者索取更多资源

Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant mammalian enzyme in DNA base excision repair pathway that cleaves the DNA backbone immediately 5' to abasic sites. In addition to its abasic endonuclease activity, APE1 has 3' phosphatase and 3'-5' exonuclease activities against DNA. We recently identified APE1 as an endoribonuclease that preferentially cleaves at UA, UG, and CA sites in single-stranded regions of RNAs and can regulate c-myc mRNA level and half-life in cells. APE1 can also endonucleolytically cleave abasic single-stranded RNA. Here, we show for the first time that the human APE1 has 3' RNA phosphatase and 3' exoribonuclease activities. Using three distinct RNA substrates, we show that APE1, but not RNase A, can remove the phosphoryl group from the 3' end of RNA decay products. Studies using various site-directed APE1 mutant proteins (H309N, H309S, D283N, N68A, D210N, Y171F, D308A, F266A, and D70A) suggest that the 3' RNA phosphatase activity shares the same active center as its other known nuclease activities. A number of APE1 variants previously identified in the human population, including the most common D148E variant, have greater than 80% reduction in the 3' RNA phosphatase activity. APE1 can remove a ribonucleotide from the 3' overhang of RNA decay product, but its 3'-5' exoribonuclease activity against unstructured poly(A), poly(C), and poly(U) RNAs is relatively weak. This study further underscores the significance of understanding the role of APE1 in RNA metabolism in vivo. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据