4.7 Article

Computational De Novo Design of a Self-Assembling Peptide with Predefined Structure

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 427, 期 2, 页码 550-562

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2014.12.002

关键词

self-assembly; computational protein design; protein structure; Fourier transform infrared spectroscopy; de novo design

资金

  1. Swedish Research Council
  2. Olle Engkvist Foundation

向作者/读者索取更多资源

Protein and peptide self-assembly is a powerful design principle for engineering of new biomolecules. More sophisticated biomaterials could be built if both the structure of the overall assembly and that of the self-assembling building block could be controlled. To approach this problem, we developed a computational design protocol to enable de novo design of self-assembling peptides with predefined structure. The protocol was used to design a peptide building block with a beta alpha beta fold that self-assembles into fibrillar structures. The peptide associates into a double beta-sheet structure with tightly packed a-helices decorating the exterior of the fibrils. Using circular dichroism, Fourier transform infrared spectroscopy, electron microscopy and X-ray fiber diffraction, we demonstrate that the peptide adopts the designed conformation. The results demonstrate that computational protein design can be used to engineer protein and peptide assemblies with predefined three-dimensional structures, which can serve as scaffolds for the development of functional biomaterials. Rationally designed proteins and peptides could also be used to investigate the subtle energetic and entropic tradeoffs in natural self-assembly processes and the relation between assembly structure and assembly mechanism. We demonstrate that the de novo designed peptide self-assembles with a mechanism that is more complicated than expected, in a process where small changes in solution conditions can lead to significant differences in assembly properties and conformation. These results highlight that formation of structured protein/peptide assemblies is often dependent on the formation of weak but highly precise intermolecular interactions. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据