4.5 Article

Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.yjmcc.2015.07.010

关键词

Mitochondrial fission; Endoplasmic reticulum stress; AMPK; NLRP3 inflammasome; Endothelial dysfunction

资金

  1. Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
  2. Qing Lan Project in Jiangsu Province
  3. China Scholarship Council (CSC)-National Scholar-ship [201307060036]

向作者/读者索取更多资源

Background and purpose: This study aims to investigate whether and how pharmacological activation of AMP-activated protein kinase (AMPK) improves endothelial function by suppressing mitochondrial ROS-associated endoplasmic reticulum stress (ER stress) in the endothelium. Experimental approach Palmitate stimulation induced mitochondrial fission and ER stress-associated endothelial dysfunction. The effects of AMPK activators salicylate and AICA riboside (AICAR) on mitochondrial ROS production, Drp1 phosphorylation, mitochondrial fission, ER stress, thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation, inflammation, cell apoptosis and endothelium-dependent vasodilation were observed. Key results Silencing of TXNIP by RNA interference inhibited NLRP3 inflammasome activation in response to ER stress, indicating that TXNIP was a key link between ER stress and NLRP3 inflammasome activation. AMPK activators salicylate and AICAR prevented ROS-induced mitochondrial fission by enhancing dynamin-related protein I (Drp1) phosphorylation (Set 637) and thereby attenuated IRE-la and PERK phosphorylation, but their actions were blocked by knockdown of AMPK Salicylate and AICAR reduced TXNIP induction and inhibited NLRP3 inflammasome activation by reducing NLRP3 and caspase-1 expression, leading to a reduction in IL-1 beta secretion. As a result, salicylate and AICAR inhibited inflammation and reduced cell apoptosis. Meanwhile, salicylate and AICAR enhanced eNOS phosphorylation and restored the loss of endothelium-dependent vasodilation in the rat aorta. Immunohistochemistry staining showed that AMPK activation inhibited ER stress and NLRP3 inflammasome activation in the vascular endothelium. Conclusion and implications: Pharmacological activation of AMPK regulated mitochondrial morphology and ameliorated endothelial dysfunction by suppression of mitochondrial ROS-associated ER stress and subsequent TXNIP/NLRP3 inflammasome activation. These findings suggested that regulation of Drp1 phosphorylation by AMPK activation contributed to suppression of ER stress and thus presented a potential therapeutic strategy for AMPK activation in the regulation of endothelium homeostasis. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据