4.7 Article

Finite Element Model Updating Using Evolutionary Strategy for Damage Detection

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1467-8667.2010.00687.x

关键词

-

资金

  1. U.S. National Science Foundation (NSF)

向作者/读者索取更多资源

Structural health monitoring through the use of finite element model updating techniques for dispersed civil infrastructures usually deals with minimizing a complex, nonlinear, nonconvex, high-dimensional cost function with several local minima. Hence, stochastic optimization algorithms with promising performance in solving global optimization problems have received considerable attention for finite element model updating purposes in recent years. In this study, the performance of an evolutionary strategy in the finite element model updating approach was investigated for damage detection in a quarter-scale two-span reinforced concrete bridge system which was tested experimentally at the University of Nevada, Reno. The damage sequence in the structure was induced by a range of progressively increasing excitations in the transverse direction of the specimen. Intermediate nondestructive white noise excitations and response measurements were used for system identification and damage detection purposes. It is shown that, when evaluated together with the strain gauge measurements and visual inspection results, the applied finite element model updating algorithm of this article could accurately detect, localize, and quantify the damage in the tested bridge columns throughout the different phases of the experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据