4.6 Article Proceedings Paper

Detection and characterization of defects using GMR probes and artificial neural networks

期刊

COMPUTER STANDARDS & INTERFACES
卷 33, 期 2, 页码 191-200

出版社

ELSEVIER
DOI: 10.1016/j.csi.2010.06.011

关键词

Non-destructive testing; Eddy currents; Magnetoresistive sensor; Neural network classifier

向作者/读者索取更多资源

This work presents an eddy-current testing system based on a giant magnetoresistive (GMR) sensing device. Non-destructive tests in aluminum plates are applied in order to extract information about possible defects: cracks, holes and other mechanical damages. Eddy-current testing (ECT) presents major benefits such as low cost, high checking speed, robustness and high sensitivity to large classes of defects. Coil based architecture probes or coil-magneto-resistive probes are usually used in ECT. In our application the GMR sensor is used to detect a magnetic field component parallel to a plate surface, when an excitation field perpendicular to the plate is imposed. A neural network processing architecture, including a multilayer perceptron and a competitive neural network, is used to classify defects using the output amplitude of the eddy-current probe (ECP) and its operation frequency. The crack detection, classification and estimation of the geometrical characteristics, for different classes of defects, are described in the paper. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据