4.7 Article

SPFP: Speed without compromise-A mixed precision model for GPU accelerated molecular dynamics simulations

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 184, 期 2, 页码 374-380

出版社

ELSEVIER
DOI: 10.1016/j.cpc.2012.09.022

关键词

Molecular dynamics; Graphic processing unit; Accelerator; Precision model; SPSP; SPDP; DPDP; SPFP

资金

  1. National Science Foundation [NSF1047875, NSF1148276]
  2. University of California [UC Lab 09-LR-06-117792]
  3. San Diego Supercomputer Center through National Science Foundation [TG-MCB090110]
  4. CUDA from NVIDIA
  5. Amazon Web Services
  6. Direct For Computer & Info Scie & Enginr
  7. Office of Advanced Cyberinfrastructure (OAC) [0910735] Funding Source: National Science Foundation
  8. Direct For Computer & Info Scie & Enginr
  9. Office of Advanced Cyberinfrastructure (OAC) [1148276] Funding Source: National Science Foundation

向作者/读者索取更多资源

A new precision model is proposed for the acceleration of all-atom classical molecular dynamics (MD) simulations on graphics processing units (GPUs). This precision model replaces double precision arithmetic with fixed point integer arithmetic for the accumulation of force components as compared to a previously introduced model that uses mixed single/double precision arithmetic. This significantly boosts performance on modern GPU hardware without sacrificing numerical accuracy. We present an implementation for NVIDIA GPUs of both generalized Born implicit solvent simulations as well as explicit solvent simulations using the particle mesh Ewald (PME) algorithm for long-range electrostatics using this precision model. Tests demonstrate both the performance of this implementation as well as its numerical stability for constant energy and constant temperature biomolecular MD as compared to a double precision CPU implementation and double and mixed single/double precision GPU implementations. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据