4.7 Article

Massively parallel chemical potential calculation on graphics processing units

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 183, 期 10, 页码 2054-2062

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cpc.2012.05.006

关键词

Monte Carlo methods; Phase equilibria; Graphics processing units; Free energy

资金

  1. National Science Foundation [CHE-0908265]
  2. Department of Energy, Office of Basic Energy Sciences [DE-SC0002128]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [0908265] Funding Source: National Science Foundation

向作者/读者索取更多资源

One- and two-stage free energy methods are common approaches for calculating the chemical potential from a molecular dynamics or Monte Carlo molecular simulation trajectory. Although these methods require significant amounts of CPU time spent on post-simulation analysis, this analysis step is well-suited for parallel execution. In this work, we implement this analysis step on graphics processing units (GPUs), an architecture that is optimized for massively parallel computation. A key issue in porting these free energy methods to GPUs is the trade-off between software efficiency and sampling efficiency. In particular, fixed performance costs in the software favor a higher number of insertion moves per configuration. However, higher numbers of moves lead to lower sampling efficiency. We explore this issue in detail, and find that for a dense, strongly interacting system of small molecules like liquid water, the optimal number of insertions per configuration can be as high as 10(5) for a two-stage approach like Bennett's method. We also find that our GPU implementation accelerates chemical potential calculations by as much as 60-fold when compared to an efficient, widely available CPU code running on a single CPU core. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据