4.7 Article

ERSS-RLNC: Efficient and robust secure scheme for random linear network coding

期刊

COMPUTER NETWORKS
卷 75, 期 -, 页码 99-112

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.comnet.2014.09.013

关键词

Random linear network coding; Authentication and encryption algorithm; Homomorphic encryption; Invertible integer and binary; global encoding matrix

向作者/读者索取更多资源

Random Linear Network Coding (RLNC) is a promising technology of Network Coding (NC) that has been proved to be both sufficient and efficient. To enable the deployment of RLNC in real networks, this paper first introduces a new efficient and flexible authentication-encryption scheme that is immune to Byzantine and eavesdropping attacks. The proposed scheme achieves simultaneously information confidentiality, packet integrity and source authentication with minimum computational complexity and memory consumption. It also presents a new technique for constructing an integer Global Encoding Matrix (GEM) that satisfies the inversion property in a dynamic manner. In addition, the proposed scheme uses dynamic keys to ensure robustness against attacks. Secondly, an efficient implementation of Binary RLNC, suitable for battery constrained mobile devices with low computational capabilities such as mobile phones and sensors, is defined. The effectiveness of the coding process is proved by modifying the Galois field of calculation from integer (int8, int16) to binary. Not only does this ensure low computational requirements, high throughput and low energy consumption, but also reduces the statistical characteristics of the coding process. The obtained theoretical and experimental results show that the new scheme is secure and efficient compared with many recent works in this field. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据