4.3 Article

Improving stability of locking compression plates through a design modification: a computational investigation

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2013.785536

关键词

finite element analysis; locking compression plate; Femur; fracture fixation; computational model

资金

  1. Academic Research Funding (AcRF) from the Ministry of Education (MoE), Singapore [R397-000-094-112]

向作者/读者索取更多资源

Femoral shaft fractures are common in both the young and elderly due to high-impact trauma and low-impact trauma, respectively. Its treatment by indirect reduction through use of locking compression plates (LCPs) has been on the rise. The LCP possess several advantages in fracture fixation, combining angular stability through use of locking screws with misalignment correction and fracture reduction onto the plate through use of conventional screws. However, there have been cases of plate breakage and fracture non-unions to warrant a study to improve its stability. A design modification is suggested for mid-diaphyseal fractures, whereby unused screw holes are removed. The structural stability of the modified and commercially available LCP is computationally analyzed using finite element modelling and a comparison made in terms of mechanical performance across different fracture lengths. A critical fracture length for which the commercially available LCP is functional as a fixator for mid-diaphyseal fractures was established. The maximum von Mises' stress attained by the commercially available LCP rose to as high as 105MPa, whereas for the modified LCP, it did not exceed 25MPa. As expected, these stresses were also found at screw holes, nearest to the fracture site. Critical fracture length allows clinicians to quantitatively distinguish between mid-diaphyseal fractures that can or cannot be treated by the use of LCP fixation. It is also believed that the proposed design modification will substantially increase the fatigue life of the fixator, especially at screw holes nearest to the fracture region, where most fatigue fractures are known to occur and will consequently be functional for greater fracture lengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据