4.3 Article

Fluid-structure interactions in micro-interlocked regions of the cement-bone interface

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2013.767336

关键词

-

资金

  1. NIH [AR42017]

向作者/读者索取更多资源

Experimental tests and computational modelling were used to explore the fluid dynamics at the trabeculae-cement interlock regions found in the tibial component of total knee replacements. A cement-bone construct of the proximal tibia was created to simulate the immediate post-operative condition. Gap distributions along nine trabeculae-cement regions ranged from 0 to 50.4 mu m (mean = 12 mu m). Micro-motions ranged from 0.56 to 4.7 mu m with a 1 MPa compressive load to the cement. Fluid-structure analysis between the trabeculae and the cement used idealised models with parametric evaluation of loading direction, gap closing fraction (GCF), gap thickness, loading frequency and fluid viscosity. The highest fluid shear stresses (926 Pa) along the trabecular surface were found for conditions with very thin and large GCFs, much larger than reported physiological levels (similar to 1-5 Pa). A second fluid-structure model was created with a provision for bone resorption using a constitutive model with resorption velocity proportional to fluid shear rate. A lower cut-off was used, below which bone resorption would not occur (50 s(-1)). Results showed that there was initially high shear rates (> 1000 s(-1)) that diminished after initial trabecular resorption. Resorption continued in high shear rate regions, resulting in a final shape with bone left deep in the cement layer, and is consistent with morphology found in post-mortem retrievals. Small gaps between the trabecular surface and the cement in the immediate post-operative state produce fluid flow conditions that appear to be supra-physiologic; these may cause fluid-induced lysis of trabeculae in the micro-interlock regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据