4.7 Article

Isogeometric analysis based topology optimization design with global stress constraint

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.08.013

关键词

Topology optimization; IGA-SIMP method; Plane stress and bending of thin plates; Global stress constraint; STM-based stabilization schemes

资金

  1. National Natural Science Foundation of China [51478086, 11772079]
  2. Open Foundation of State Key Laboratory on Disaster Reduction in Civil Engineering, China [SLDRCE17-03]

向作者/读者索取更多资源

This paper presents an isogeometric analysis (IGA) based design method to address the stress-constrained topology optimization problem of plane stress and bending of thin plates. Based on the popular SIMP model, the integrated framework of geometry modeling, structural stress analysis and optimization is established. Owing to the geometry exactness and high-order continuity between elements, the IGA improves the computational accuracy of stress, and thus enhances the credibility of optimum design. Meanwhile, the obvious zigzag boundaries are avoided in the optimized results, and the stress function of IGA maintains the continuity for a relatively coarse discretization. Moreover, the IGA-SIMP method can easily meet the requirement of C-1-continuity for the Kirchhoff plate formulations, which also facilitates the stress analysis and sensitivity calculation. To overcome the convergence difficulty of highly nonlinear stress aggregation constraint, two STM (stability transformation method)-based stabilization schemes combining with the P-norm function for global stress constraint are developed to achieve the stable iterations and acceptable designs. Finally, representative examples illustrate the effectiveness and convenience of the proposed approach. It is indicated that the IGA-SIMP method shows superior performance for solution accuracy and efficiency, and the local stress level is well controlled. (C) 2018 Elsevier B.Y. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据