4.7 Article

An adaptive sub-incremental strategy for the solution of homogenization-based multi-scale problems

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2013.01.003

关键词

Multi-scale analysis; Homogenization; Line Search; Arc-Length method; Incremental approach

资金

  1. Portuguese Science and Technology Foundation (FCT) [SFRH/BD/60887/2009]
  2. Fundação para a Ciência e a Tecnologia [SFRH/BD/60887/2009] Funding Source: FCT

向作者/读者索取更多资源

In this contribution, several schemes for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains with inelastic material behavior are investigated. These schemes are aimed at improving the robustness and efficiency of the Newton-Raphson method in the multilevel finite element (ML-FEM) framework. An adaptive sub-incremental strategy is proposed for the discrete representative volume element (RVE) boundary value problem. The procedure is able to ensure the convergence of the solution algorithm, in the presence of several sources of non-linearity, and obtains improved initial guesses for the Newton-Raphson scheme in the ML-FEM framework. The enlargement of the convergence bowl of the Newton-Raphson procedure at the micro-scale allows larger macroscopic deformation gradients to be prescribed and significantly reduces the overall computational cost of ML-FEM analyses. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme at the macroscopic level. Numerical examples of both micro-scale and two-scale finite element simulations are presented to demonstrate the improved robustness and efficiency of the solution procedures proposed. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据