4.7 Article

Geometric modeling, isogeometric analysis and the finite cell method

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2012.05.022

关键词

Finite cell method; Fictitious domain method; Embedding domain method; Thin-walled structures; High-order methods; Isogeometric analysis

资金

  1. Excellence Initiative of the German Federal Government
  2. Excellence Initiative of the German State Government via the TUM International Graduate School of Science and Engineering
  3. Munich Centre for Advanced Computing (MAC)

向作者/读者索取更多资源

The advent of isogeometric analysis (IGA) using the same basis functions for design and analysis constitutes a milestone in the unification of geometric modeling and numerical simulation. However, an important class of geometric models based on the CSG (Constructive Solid Geometry) concept such as trimmed NURBS surfaces do not fully support the isogeometric paradigm, since basis functions do not explicitly represent the boundary. The finite cell method (FCM) is a high-order fictitious domain method, which offers simple meshing of potentially complex domains into a structured grid of cuboid cells, while still achieving exponential rates of convergence for smooth problems. In the present paper, we first discuss the possibility to directly couple the finite cell method to CSG, without any necessity for meshing the three-dimensional domain, and then explore a combination of the best of the two approaches IGA and FCM, closely following ideas of the recently introduced shell FCM. The resulting finite cell extension to isogeometric analysis achieves a truly straightforward transfer of a trimmed NURBS surface into an analysis suitable NURBS basis, while benefiting from the favorable properties of the high-order and high-continuity basis functions. Accuracy and efficiency of the new approach are demonstrated by a numerical benchmark, and its versatility is outlined by the analysis of different trimmed design variants of a brake disk. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据