4.7 Article

Modeling studies and efficient numerical methods for proton exchange membrane fuel cell

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 200, 期 47-48, 页码 3324-3340

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2011.08.007

关键词

Proton exchange membrane fuel cells (PEMFCs); Nonisothermality; Two-phase transport; Combined finite element-upwind finite volume; Kirchhoff transformation; Newton's linearization

资金

  1. NSF [DMS-0913757]

向作者/读者索取更多资源

In this paper, a three-dimensional (3D), nonisothermal, multiphysics, two-phase steady state transport model and its efficient numerical methods are systematically studied for a full proton exchange membrane fuel cell (PEMFC) in the sense of efficiency and accuracy. The conservation equations of mass, momentum, species, charge and energy are fully addressed in view of nonisothermality and multiphase characteristics. In addition, from an accurate numerical discretization's point of view, we present some new formulations for species equations by investigating the interactions among the species. In a framework of the combined finite element-upwind finite volume method, some efficient numerical methods are developed in terms of Kirchhoff transformation for the sake of a fast and convergent numerical simulation. The 3D simulations demonstrate that the convergent solutions can be attained within 80 nonlinear iterations, in contrast to the oscillating and nonconvergent iterations conducted by commercial flow solvers or in-house code with standard finite element/volume methods. Numerical convergence tests are carried out to verify the efficiency and accuracy of our numerical algorithms and techniques. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据