4.7 Article

A large deformation, rotation-free, isogeometric shell

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 200, 期 13-16, 页码 1367-1378

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2010.12.003

关键词

Isogeometric analysis; NURBS; Shells; Rotation-free; Metal stamping

资金

  1. NSF [0700204]
  2. ONR [N00014-08-1-0992]

向作者/读者索取更多资源

Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner-Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C(0) basis functions are possible, they are complicated in comparison to their C(1) counterparts. A C(k)-continuous, k >= 1, NURBS-based isogeometric shell for large deformations formulated without rotational degrees of freedom is presented here. The effect of different choices for defining the shell normal vector is demonstrated using a simple eigenvalue problem, and a simple lifting operator is shown to provide the most accurate solution. Higher order elements are commonly regarded as inefficient for large deformation analyses, but a traditional shell benchmark problem demonstrates the contrary for isogeometric analysis. The rapid convergence of the quadratic element is demonstrated for the NUMISHEET S-rail benchmark metal stamping problem. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据